Publications by Year: 2019

2019
Pun AB, Campos LM, Congreve DN. Tunable Emission from Triplet Fusion Upconversion in Diketopyrrolopyrroles [Internet]. Journal of the American Chemical Society 2019; Publisher's VersionAbstract
Optical upconversion based on triplet fusion (TF), also known as triplet–triplet annihilation, is a process by which two or more low-energy photons are converted to one higher energy photon. This process requires two components, a sensitizer which absorbs the incident low-energy photons and an annihilator which emits the higher energy photons. While much attention has been given to the investigation of new types of sensitizers, very little work has been done on the exploration of new annihilators. In this work, we show that the singlet energy of diketopyrrolopyrroles (DPPs) can be altered by modifying the pendant aryl substituents to the core. This allows us to meet the energetic requirements necessary for TF upconversion and demonstrates DPPs as a new class of annihilator molecules. Using this new DPP platform, the output wavelength from upconversion can easily be tuned, which will greatly diversify the number of applications of DPPs in upconversion technologies.
Ravetz BD, Pun AB, Churchill EM, Congreve DN, Rovis T, Campos LM. Photoredox catalysis using infrared light via triplet fusion up conversion [Internet]. Nature 2019;565:343-346. Publisher's VersionAbstract
Recent advances in photoredox catalysis have made it possible to achieve various challenging synthetic transformations, polymerizations and surface modifications1,2,3. All of these reactions require ultraviolet- or visible-light stimuli; however, the use of visible-light irradiation has intrinsic challenges. For example, the penetration of visible light through most reaction media is very low, leading to problems in large-scale reactions. Moreover, reactants can compete with photocatalysts for the absorption of incident light, limiting the scope of the reactions. These problems can be overcome by the use of near-infrared light, which has a much higher penetration depth through various media, notably biological tissue4. Here we demonstrate various photoredox transformations under infrared radiation by utilizing the photophysical process of triplet fusion upconversion, a mechanism by which two low-energy photons are converted into a higher-energy photon. We show that this is a general strategy applicable to a wide range of photoredox reactions. We tune the upconversion components to adjust the output light, accessing both orange light and blue light from low-energy infrared light, by pairwise manipulation of the sensitizer and annihilator. We further demonstrate that the annihilator itself can be used as a photocatalyst, thus simplifying the reaction. This approach enables catalysis of high-energy transformations through several opaque barriers using low-energy infrared light.
Peng Y, Jiang K, Hill W, Lu Z, Yao H, Wang H. Large-Scale, Low-Cost, and High-Efficiency water-Splitting System for Clean H2 Generation [Internet]. ACS Applied Materials & Interfaces 2019;11(4):3971-3977. Publisher's VersionAbstract

 Scaling up electrochemical water splitting is nowadays in high demand for hydrogen economy implementation. Tremendous eff orts over the past decade have been focused on exploring alternative catalytic materials, including a variety of earth-abundant transitionmetal-based catalysts, to replace traditional noble metals such as Pt, Ir, or Ru. Nevertheless, few eff orts have been carried out for (1) scalable catalyst synthesis on current collectors and (2) practical device design toward large-scale H2  generation. Herein, we designed a modular alkaline water-splitting electrolyzer system with scaled-up metal foam electrodes covered by low-cost NiMo alloy and Ni3 Fe oxide for efficient hydrogen evolution and oxygen evolution, respectively. An electrolyte circulation system facilitates the mass transport and thus can further boost the H2  generation particularly under large currents. As a result, the overall water-splitting performance of one-unit cell with a dimension of 10 Å~  10 cm2  under room temperature presents an early onset voltage of 1.54 V and delivered practical currents of 20 and 55 A (9.1 and 25.0 L/h H2  generation) under 2.2 and 2.9 V without iR  compensations, respectively. This demonstration could stimulate new focuses in water splitting toward more practical applications.

2019_pengwang_large-scale_h2_generation.pdf