Transformation Multiphysics


Moccia M, Castaldi G, Galdi V, Savo S, Sato Y. Transformation Multiphysics. In: Transformation Wave Physics. Pan Stanford Publishing; 2013


Spatial tailoring of the material constitutive properties is a well-known strategy to mold the local flow of given observables in different physical domains. Coordinate transformation-based methods (e.g., transformation optics) offer a powerful and systematic approach to design anisotropic, spatially-inhomogeneous artificial materials (“metamaterials”) capable of precisely manipulating wave-based (electromagnetic, acoustic, elastic) as well as diffusion-based (heat) phenomena in a desired fashion. However versatile these approaches have been, most designs have so far been limited to serving single-target functionalities in a given physical domain. Here we present a “transformation multi physics” framework that allows independent and simultaneous manipulation of multiple physical phenomena. As a proof of principle of this new scheme, we design and synthesize (in terms of realistic material constituents) a metamaterial shell that simultaneously behaves as a thermal concentrator and an electrical “invisibility cloak”. Our numerical results open up intriguing possibilities in the largely unexplored phase space of multi- functional metadevices, with a wide variety of potential applications to electrical, magnetic, acoustic, and thermal scenarios

Last updated on 10/30/2015