EPR spectroscopy of iron- and nickel-doped [ZnAI]-layered double hydroxides: modeling active sites in heterogenous water oxidation catalysts

Citation:

Sayler RI, Hunter BM, Fu W, Gray HB, Britt RD. EPR spectroscopy of iron- and nickel-doped [ZnAI]-layered double hydroxides: modeling active sites in heterogenous water oxidation catalysts [Internet]. Journal of the American Chemical Society 2019;
jacs.9b10273.pdf854 KB

Abstract:

Iron-doped nickel layered double hydroxides (LDHs) are among the most active heterogeneous water oxidation catalysts. Due to inter-spin interactions, however, the high density of magnetic centers results in line-broadening in magnetic resonance spectra. As a result, gaining atomic-level insight into the catalytic mechanism via electron paramagnetic resonance (EPR) is not generally possible. To circumvent spin-spin broadening, iron and nickel atoms were doped into non-magnetic [ZnAl]-LDH materials and the coordination environments of the isolated Fe(III) and Ni(II) sites were characterized. Multifrequency EPR spectroscopy identified two distinct Fe(III) sites (S = 5/2) in [Fe:ZnAl]-LDH. Changes in zero field splitting (ZFS) were induced by dehydration of the material, revealing that one of the Fe(III) sites is solvent-exposed (i.e. at an edge, corner, or defect site). These solvent-exposed sites feature an axial ZFS of 0.21 cm-1 when hydrated. The ZFS increases dramatically upon dehydration (to -1.5 cm-1), owing to lower symmetry and a decrease in the coordination number of iron. The ZFS of the other (“inert”) Fe(III) site maintains an axial ZFS of 0.19-0.20 cm-1 under both hydrated and dehydrated conditions. We observed a similar effect in [Ni:ZnAl]-LDH materials; notably, Ni(II) (S = 1) atoms displayed a single, small ZFS (±0.30 cm-1) in hydrated material, whereas two distinct Ni(II) ZFS values (±0.30 and ±1.1 cm-1) were observed in the dehydrated samples. Although the magnetically-dilute materials were not active catalysts, the identification of model sites in which the coordination environments of iron and nickel were particularly labile (e.g. by simple vacuum drying) is an important step towards identifying sites in which the coordination number may drop spontaneously in water, a probable mechanism of water oxidation in functional materials.

Publisher's Version