Harnessing bifurcations in tapping-mode atomic force microscopy to calibrate time-varying tip-sample force measurements.


Torsional harmonic cantilevers allow measurement of time-varying tip-sample forces in tapping-mode atomic force microscopy. Accuracy of these force measurements is important for quantitative nanomechanical measurements. Here we demonstrate a method to convert the torsional deflection signals into a calibrated force wave form with the use of nonlinear dynamical response of the tapping cantilever. Specifically the transitions between steady oscillation regimes are used to calibrate the torsional deflection signals.