Sequential multi-molecule delivery using vortex-assisted electroporation

June 4, 2013

SJ Claire Hur's ┬ÁFluidic Biophysics Lab┬ádeveloped an on-chip microscale electroporation system that enables sequential delivery of multiple molecules with precise and independent dosage controllability into pre-selected identical populations of target cells. The ability to trap cells with uniform size distribution contributed to enhanced molecular delivery efficiency and cell viability. Additionally, the system provides real-time monitoring ability of the entire delivery process, allowing timely and independent modification of cell- and molecule-specific electroporation parameters. The precisely controlled amount of inherently membrane-impermeant molecules was transferred into human cancer cells by varying electric field strengths and molecule injection durations. The proposed microfluidic electroporation system's improved viability and comparable gene transfection efficiency to that of commercial systems suggest that the current system has great potential to expand the research fields that on-chip electroporation techniques can be used in.