Research at Rowland

      RJF Spicer's populus in the greenhouse

The Rowland Institute at Harvard is dedicated to experimental science over a broad range of disciplines. Current research is carried out in physics, chemistry, and biology, with an emphasis on interdisciplinary work and the development of new experimental tools. Since the merger with Harvard in 2002, the Rowland Institute continues Dr. Edwin Land's vision of the ideal laboratory: a broad view of science and an appreciation for the rich potential for discovery in the contact between the traditional disciplines; a dedication to small-scale laboratory science; an emphasis on technical support of the highest level for experimentation; and a desire to let the best minds be creative without concern for the vagaries of the funding world.

The diversity of science at the Institute is illustrated on these two pages:  current research and past research.

Current research

Rowland Junior Fellows

Host Microbe and Toxicity Group - Robert M. Brucker  (microbial evolution and toxicology)  
The focus of the Brucker lab is on interactions of environmental toxins metabolized by the gut microbiome. We utilize natural product chemistry, ecotoxicology, population genetics, evolution, and experimental microbiota to test hypotheses on the interaction between microbiota of the gut and environmental toxins consumed by the host animal. We are particularly interested in how acute and long-term exposure to environmental toxins, such as pesticides, can cause changes to the microbiota population of the gut in both structure and function.

Cold Ion Spectroscopy Lab - Alessandra Ferzoco - (chemistry)
Reactions useful for the conversion of light energy into chemical energy are often complex because they require multiple charge transfer steps. Coupling electron and proton transfer facilitates these reactions by avoiding the high-energy intermediates found if electrons and protons are transferred individually and by enabling multiple charge transfer steps at one location. Our lab seeks to understand the types of chemical structures and environments that promote concerted electron/proton transfer by studying how ion structure changes in going from the ground state to electronically excited states. To accomplish these studies our lab works at the intersection between mass spectrometry and laser spectroscopy. We develop custom instrumentation to generate and trap ions and ion-molecule complexes, control their temperature, and then interrogate them by various types of spectroscopy.

µFluidic Biophysics Lab - SJ Claire Hur - (biomedical engineering)
Single-cell deformability has been recently identified as a critical biomarker for various diseases and it varies considerably based on phenotypes. Current cell deformability measurement techniques, however, are inherently low throughput for statistical analysis of large heterogeneous biological samples. We focus on developing high-throughput microfluidic techniques for measuring intrinsic properties of single cells, including intracellular viscosity, membrane tension/elasticity and Young's modulus. These measurements will allow us to identify potential genetic-alterations and phenotype-changes, responsible for modification in such properties of cells. Furthermore, systematic determination of single-cell mechanical properties in a rapid and standardized manner will expedite an adoption of aforementioned properties as new types of biomarkers for phenotype characterizations. These newly revealed biomarkers should provide efficient tools for determining the cell state and phenotype, which are potentially useful for cancer diagnostics and prognostics, cell-based therapeutics as well as developmental biology.

RoLi Lab - Jennifer Li  - (systems and behavioral neuroscience)
The ability to adjust one’s actions based on past experience (learning) and retain the value of past actions (memory) is one of the most complex, fascinating, and mysterious processes mediated by the animal brain. Fundamental questions remain about the precise contribution of individual neurons to learning, as well as the nature and complexity of interactions across neural circuits implicated in learning. Our lab aims to address these questions by recording and manipulating activity throughout an entire vertebrate brain while an animal actively engages in exploration and learning. Using the latest advances in optogenetics and microscopy, we will identify and selectively manipulate the neural circuitry that underlies learning in larval zebrafish, as well as develop novel high throughput learning paradigms for pharmacological and genetic screening.

Nanoscale Sensors and Systems - Qimin Quan - (applied physics and nanotechnology)
Our lab seeks to understand novel optical phenomena in nanoscale structures and apply these novel phenomena to build functional devices. Optical cavities and nanostructures provide powerful means for modifying the interactions between light and matter, and have many exciting applications from quantum communications to sensors. We are interested in developing high-sensitivity, high-throughput biomedical sensors towards the realization of a portable instrument. We are also interested in combining the light manipulation method with functional materials, such as polymers and carbon nanotubes to realize new functions.

RoLi Lab - Drew Robson  -  (neuroscience - microscope design and optogenetics)
Optogenetic tools are currently revolutionizing the field of systems neuroscience. To take advantage of these tools, our lab is developing novel imaging systems and computational frameworks to flexibly address neurons throughout an entire vertebrate brain. Using techniques such as multi-photon microscopy, selective plane illumination microscopy (SPIM), and optogenetics, we will dissect the interaction between neural networks in larval zebrafish. Specifically, we are interested in the neural circuitry that underlies reinforcement learning. The techniques that we are developing will make it possible to rigorously test the involvement of multiple classes of reinforcement signals, clarify their interdependence, and raise new hypotheses about the organization of reinforcement circuitry in a vertebrate brain.

Microbial Biophysics and Systems Biology Lab- Alvaro Sanchez - (biophysics)
Microbes are social organisms that are most commonly found forming complex ecological communities. Every species in a community is typically represented by large numbers of cells which may also differ in their individual behaviors. A fascinating fact is that the individual behavior of a microbial cell often depends on what the other cells in their vicinity are doing; much like animals do, microbes implement social strategies. Not having a central nervous system to help them make decisions, bacteria adopt these social strategies as alternative phenotypes, encoded in their DNA sequences and governed by biochemical and gene regulatory circuits. Evolutionary changes in these "decision-making circuits" will therefore affect ecological interactions between species and are an essential component of microbial communities. Our lab is interested in shedding some light into this rather complex system, and understanding the relationship between the evolution of microbial behavior and microbial ecology. For instance, we ask questions such as: How is the social behavior of microbes encoded in their DNA? How does the behavior of individuals from one species affect the behavior of other species in the community? Can we describe these interactions quantitatively? How does the structure of microbial communities affect the evolution of social traits? Can we quantitatively map complex microbial interaction networks and predict their community dynamics? In order to tackle these questions, we use a combination of biophysical tools (in order to grow large numbers of cultures in parallel and help us determine the frequencies of different species in these communities), mathematical and computational modeling (to help us generate quantitative hypotheses and understand our data) and systems and synthetic biology (in order to engineer cells with pre-determined social behaviors and to assemble communities in vitro).

Rowland Senior Fellows

Trapped Ion Dynamics - Joel Parks – (physics)
Electron diffraction measurements of isolated, single sized clusters stored in ion traps is being applied to the study of small (n ~10-50 atoms) metal clusters including Aun and Agn. These measurements are directed to better understand and exploit the dependence of catalytic reactivity on cluster structure and temperature. Sensitive methods developed to measure laser-induced fluorescence from <10 trapped ions are being applied to study the dynamics of DNA in gas phase. Temperature dependent measurements demonstrate these methods will be useful to characterize conformational change in gas phase biomolecules. Sequential loss of electrons from trapped DNA anions has been observed for the first time and experiments suggest DNA conformations may be a determining factor.

Staff Scientists

Associate Director for Science - Michael Burns – (physics)
Over the years I've participated in a number of, to me, fascinating projects. I have found no particular common thread other than simple curiosity coupled with an opportunity to indulge that curiosity, and equally curious colleagues. Some of the current and past projects are described herein.

Electronics Engineering - Winfield Hill – (technology)
The Electronics Engineering Laboratory pursues R & D projects that push the envelope of scientific instrumentation. We do this by applying technologies from diverse fields to create unique instruments, and by learning and applying advanced circuit-design knowledge to endow otherwise common-place instruments with superior performance.

Biophysical Sciences - Diane Schaak – (biophysics)

Computation - Alan Stern – (mathematics)

Laboratory Engineer - John Chervinsky  – (engineering) 

Instrumentation development - Chris Stokes  – (electronics engineering)

Bacterial motility - Linda Turner Stern  – (microbiology)

Affiliated Harvard Faculty

Bacterial Motility and Behavior - Howard Berg – (biophysics)
The Berg lab at Rowland is a branch of Howard Berg's lab at the Department of Molecular and Cellular Biology on the main Harvard campus. It investigates bacterial motility and chemotaxis using video, fluorescence, and electron microscopy. The chief target of research is the bacterium Escherichia coli, with topics ranging from the hydrodynamics of swimming with flagella to a phenomenological description of chemotactic movement to studies of the biochemical networks that allow E. coli to perform chemotaxis. Recent work includes imaging of pili-mediated twitching motility in Pseudomonas aeruginosa, high-speed video imaging of flagellar filaments during E. coli tumbling, and the creation of a Serratia marcescens 'bacterial carpet' that mixes and pumps liquid inside microfluidic channels.

Scanning Tunneling Microscopy Group - Venky Narayanamurti – (physics)
Research within the Narayanamurti Group is directed at the physics of hot electron- and hole- transport in novel semiconductor electronic materials and devices. A key goal is to study quantum confinement effects in nanostructures. The group interacts with similar electronic materials efforts at other universities, government, and industrial research laboratories.

Oxides Research Group - Shriram Ramanathan – (materials science)
Research in our group is primarily focused on oxide thin films and nanostructures with emphasis on understanding how processing affects properties. Research activities include developing mechanistic understanding of initial stages of oxidation of metals and oxygen incorporation into oxides under photon irradiation. Phase evolution in oxides and their stability as a function of temperature and doping is investigated using combination of structural, electrical and electrochemical studies. Quantitative determination of oxygen concentration in nanoscale oxides and research on techniques to precisely control oxygen stoichiometry at interfaces are also being actively pursued. Potential applications of our research include electronic devices, solar and hydrogen energy conversion, sensors.

 Director of Science - Cynthia Friend– (chemistry)
 My current research is focused on developing solutions to important problems in energy usage and environmental chemistry.  The two major facets of my work are (1) design and development of new processes for sustainable and efficient chemical synthesis using alloy catalysts as a means of reducing dependence on fossil fuel resources; and, (2) investigation of new semiconductor materials for light-induced reactions, including water splitting and degradation of organic pollutants.

Past research

Rowland Junior Fellow Alumni

David Cox - Harvard University
Humans recognize visual objects with such ease that it is easy to overlook what an impressive computational feat this represents. Any given object in the world can cast an effectively infinite number of different images onto the retina, depending on its position relative to the viewer, the configuration of light sources, and the presence of other objects in the visual field. In spite of this extreme variation, biological visual systems are able to effortlessly recognize at least hundreds of thousands of distinct object classes—a feat that no current artificial system can come close to achieving. Our laboratory seeks to understand the neuronal mechanisms that enable this ability by reverse engineering simple biological visual systems. It is our hope that this work leads to a greater understanding of how our own brain works and to the construction of improved artificial visual systems.

Ben deBivort - Harvard University
The animal kingdom contains staggering morphological diversity, but even greater variety is manifest in animal behavior. All animals display species-specific ecological behaviors and behavior alone can distinguish species that are otherwise morphologically identical. Moreover, evolution and behavior exert reciprocal influences on each other - while evolution can diversify behavior, behavior can constrain the evolution of species. The goal of our lab is to understand the neurobiological mechanisms of ecologically and evolutionarily relevant behaviors using techniques drawn from circuit-driven neuroscience, comparative genomics, and ethology, as they are manifested in fruit flies from the genus Drosophila.

Zvonimir Dogic - Rowland | Brandeis University
Complex Fluids and Condensed Matter
The objective of our research is to understand and control the self-assembly of matter on a colloidal length scale. The basic building blocks used are colloids of chemical or biological origin with well controlled spherical or rod-like shape and polymers with varying persistence length. The interactions between these components are well understood and can be modified in systematic ways. Despite the simplicity of these building blocks, they assemble into a variety of novel structures with unexpected complexity, e.g. 2D smectic phases, colloidal membranes, twisted chiral ribbons, and lamellar and columnar phases. These processes of self-assembly are under thermodynamic control and we use statistical mechanics to understand the final equilibrium structures. In the future we intend to study the assembly, phase transitions and dynamics of colloidal systems under non-equilibrium conditions

Peer Fischer - Rowland | Max Planck Institute
Symmetry and Chirality
Our research focuses on the interaction of molecules with optical, magnetic, and electric fields. We are interested in a diverse spectrum of phenomena, ranging from light-matter interactions to electromagnetic forces. A specific aim is to develop new experimental methods and instrumentation for the detection of molecules and the separation of enantiomers.

Kristin Lewis - Rowland | Volpe National Transportation System Center
Ecology and Botany
Parasitic angiosperms are unusual among parasitic organisms in that they and their hosts are in the same order and are very similar physiologically. The comparable physiology of parasite and host enables the parasite to create direct connections with host-plant conductive tissues and cells. Additionally, the host and parasite are influenced by similar endogenous and exogenous physiological cues. We are interested in what kinds of information can be shared across the host-parasite boundary and how this affects both plants' responses to environmental conditions. Our research focuses on the use of novel methodology to track transfer of resources and signaling molecules between host and parasite.

Jiwoong Park - RowlandCornell University
Nanoelectronics and Nanosensors
The electrical conductance of many nanoscale materials is strongly affected by a local electrostatic and electrochemical environment. This unique property can be utilized to build a nanosensor whose spatial resolution is comparable to the size of the sensor itself. The objective of our research is to investigate the electron transport properties of various nanoscale materials, including carbon nanotubes, semiconducting nanowires and single molecules, and to develop nanoscale sensors based on them.

Chris RichardsRowland | Royal Veterinary College, UK
My lab explores how muscles move limbs to power swimming. Muscle is a spectacularly efficient and powerful motor which drives behaviors that impress biologists and engineers alike. How do aquatic animals accelerate rapidly or maneuver precisely at high swimming speeds? Intuition tells us that high performance swimming, such as prey capture or escaping, demands high muscle power. However, we cannot often predict the muscle power required for a given swimming task. Moreover, we do not fully understand how nerves communicate with muscles to achieve the exquisite control of swimming performance seen in nature. My lab seeks to understand the physiological basis for how nature's swimming machines (e.g. frogs, fish, aquatic insects) solve the difficult engineering problem of moving rapidly through water.

Ozgur Sahin - Rowland | Columbia University
Nanomechanical Sensing
At the molecular level, physical and chemical properties of materials are tightly coupled to the mechanical properties. The potential of mechanics for interacting with matter at the nanoscale has been largely unexplored due to lack of instruments capable of performing mechanical measurements at nanometer length scales. Our research focuses on developing tools and techniques to perform nanomechanical measurements and applying them to problems in materials science, cell biology, and molecular biology.

Yuki Sato - Rowland
Applied Matter & Devices
One of the overarching themes of our research is the investigations and applications of quantum coherent matter. In superconductors, superfluids, and Bose-Einstein condensates, a large fraction of constituent particles can occupy the same quantum ground state and behave in many ways as a single entity. We are interested in not only studying fascinating properties of such state of matter but also applying them as a set of tools to elucidate some subtleties of the quantum world. With disregard for presumed boundaries between applied physics, material science, and engineering, we also develop metamaterials and devices whose novel properties do not naturally exist in nature. Our current interests include superfluid and superconducting Josephson phenomena, nano/micro/meta-materials & devices, inertial sensing technologies, matter wave interferometry, and force/displacement sensing limits.

Ethan Schonbrun - Rowland
Opto-fluidic Cytometry
In biotechnology and medical diagnostics there is a large demand for the analysis of enormous sets of samples. Optical detection systems such as micro-array scanners, flow cytometers, and fluorescence microscopes are the standard work horse instrumentation for these applications. While these systems have proven successful, they are frequently based on the frame of a standard optical microscope which has tradeoffs in field of view, resolution, and light collection. By designing optical systems using a priori knowledge of the sample, many of these tradeoffs can be circumvented. In the Optofluidics Cytometry lab, we will investigate optical detection systems based on microfabricated components, such as lens arrays, computer generated holograms, and artificial dielectrics. By integrating these components with microfluidics and high speed cameras, we hope to realize a new generation of optical diagnostic devices.

Andrew Speck - Rowland
Ultracold Rydberg Atoms and Terahertz Spectroscopy
The objective of our research is to study the interaction of highly excited, or Rydberg atoms, with unipolar terahertz electromagnetic pulses (half cycle pulses). These systems provide a fascinating regime in which to explore atomic states which exhibit both classical and quantum properties. The first series of experiments in my group will explore the interaction of a train of these pulses with Rydberg atoms. Further research will include the study of the magnetic properties of the half cycle pulse and their effect on atomic systems.

Rachel Spicer - Rowland | Connecticut College
Plants are able to regenerate whole body parts like roots and shoots with relative ease because they demonstrate amazing cellular plasticity. Masters of dedifferentiation, plants not only retain pools of stem cells throughout their lives, but also create new stem cells in response to developmental and environmental cues. My primary interest is in the role of parenchyma cells in shaping large woody plants - namely, through their ability to dedifferentiate and generate new meristems in response to wounding, and during the transition to secondary growth. I'm interested in developing molecular and microscopy techniques to study secondary growth, including methods to image live cells in woody tissue.

Frank Vollmer - Rowland | Max Planck Institute
Biofunctional Photonics
We are interested in design and fabrication of photonic structures and circuits that interface, probe and manipulate biological systems with single molecule sensitivity. To reach this objective, light-matter interaction can be sufficiently enhanced by photon recirculation in micro- and nano-scale cavities that offer ultimate Q and record-low modal volume. Once established, the technique can help elucidate recognition, interaction and transformation of label-free biomolecules, the interplay of which give rise to various complex functions and networks that have evolved in the cell. Furthermore, access to a vast repertoire of functionality by self-assembly of purified or genetically altered biological components provides exciting opportunity for engineering of molecular-photonic device architecture.

Laurence Wilson - Rowland | University of York
Biophysical Imaging and Spectroscopy Group
We are interested in understanding bacterial motility, particularly relating to the formation and propagation of biofilms. Most studies to date have focused either on macroscopic phenomena (for example, the size of colonies growing on agar plates) or on microscopic, single cell measurements. Our work focuses on the behavior of E. coli, using newly developed image processing algorithms to assess motility in much larger groups of individuals (typically around 10,000 at a time) than previously possible. We use high-throughput Fourier-space techniques, allowing the study of motility over a range of length scales from 1 micrometer to 1 millimeter, and timescales from one millisecond to several hours.

Wesley Wong - Rowland | Immune Disease Institute, Harvard Medical School Affiliate
Single-molecule Force Studies
We are interested in how biological systems work at the nanoscale, and the physical laws that govern their behavior. Our focus is on weak, thermally mediated interactions between and within biological molecules (e.g. base-pairing in nucleic acids, receptor-ligand bonding, protein folding, etc.), and the coupling of these interactions to mechanical force. We are currently developing and applying new techniques, based on optical tweezers and high-resolution optical detection, to study the mechanics and force-driven kinetics of single-molecules.

Rowland Scientists Alumni

Steven M. Block - Stanford University
Single Molecule Biophysics
Research in our lab marries aspects of physics and biology to study the properties of proteins or nucleic acids at the level of single macromolecules and molecular complexes. Experimental tools include laser-based optical traps ("optical tweezers") and a variety of state-of-the-art fluorescence techniques, in conjunction with custom-built instrumentation for the nanometer-level detection of displacements and piconewton-level detection of forces.

Ava Chase - Rowland
Animal Behavior
Using discrimination tasks we explore the perceptual and cognitive capabilities in fish.

Dongmin Chen - Rowland | Peking University
Nanoscale Quantum Physics
The main thrust of our group is to explore novel quantum phenomena in nanoscale materials using scanning tunneling microscopy in an ultra high vacuum, low temperature and high magnetic field environment.

Louis Cincotta - Rowland
Photomedicine and Photobiology
Supramolecular chemistry of the phenothiazine moeity and design of photosensitizers for the photo-inactivation of viruses. Isolation of anti-cancer agents from natural products and the exploration of tumor immunotherapies through the use of photodynamically generated tumor associated antigens.

James Foley - Rowland
Our research interests center on understanding fundamental structure/function relationships pertaining to the photophysics that govern the properties and behavior of organic dyes. We use this knowledge to develop improved chromophores for use in biophysical, biological and medical applications such as single molecule detection, fluorescent reporting and photodynamic therapy. Our approach encompasses nearly every aspect that is essential to such an undertaking including computer-aided design, chemical synthesis and photophysical characterization of target dyes.

Jean-Marc Fournier - Rowland
Optical Structures
Research in how light interacts with matter : Lippmann photography (historical full-color photography process), developement of very high resolution photosensitive materials, optical trapping, holography, and an ultra-sensitive phase imaging microscope.

Lene Vestergaard Hau - Rowland | Harvard University
Bose-Einstein Condensation and Non-Linear Optics
Research centered on cold atoms and Bose-Einstein condensation. Using laser cooling to efficiently precool atoms to temperatures in the microkelvin regime, then subsequently, the atoms are trapped in a 4 Dee magnet and evaporatively cooled to nanokelvin temperatures. This results in the creation of Bose-Einstein condensates typically containing millions of atoms. The condensates are formed in an ultra high vacuum system constructed for easy access to and manipulation of cold atom clouds with light probes and mechanical structures.

Jeffrey Hoch - Rowland | University of Connecticut Medical School
We study protein structure, dynamics, and stability. We try to understand how these properties relate to biological function. Our principal tool is NMR spectroscopy, but we also rely on other biophysical techniques.

Amit Meller - Rowland | Boston University
Single Molecule Biophysics
We study the dynamics of individual DNA and RNA molecules threaded through a nanomete scale pore (“nanopore”). The threading of the negatively charged biopolymers is made possible by an electric field applied across the nanopore. Controlling the magnitude of the field in real time allow us to apply a varying force on the molecule and study its response. In this way we are able to detect the interactions of polynucleotides with proteins, and study secondary structure formation in RNA. The structure of the single molecule is probed using time-resolved Fluorescence Resonance Energy Transfer and single channel ion current measurements.

John Osterhout - Rowland | Angelo State University
Studies of a helical hairpin peptide, alpha T alpha, which is a de novo designed helix-turn-helix peptide using Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR)

Robert Savoy - Rowland
Brain mapping research using temporal resolution of fMRI to drive novel experimental design.

Diane Schaak - Rowland
The objective of my research is to develop an alternative method for treatment of bacterial infections using nature's own cure: the bacteriophage. Through a variety of molecular biological techniques, bacteriophages are being enhanced to insure complete elimination of an invasive bacteria.