Current research

Rowland Junior Fellows

Host Microbe and Toxicity Group - Robert M. Brucker  (microbial evolution and toxicology)  
The focus of the Brucker lab is on interactions of environmental toxins metabolized by the gut microbiome. We utilize natural product chemistry, ecotoxicology, population genetics, evolution, and experimental microbiota to test hypotheses on the interaction between microbiota of the gut and environmental toxins consumed by the host animal. We are particularly interested in how acute and long-term exposure to environmental toxins, such as pesticides, can cause changes to the microbiota population of the gut in both structure and function.

Excitonic Materials and Devices - Dan Congreve   - (electrical engineering, physics and chemistry)  
We seek to better understand the physics in combinations of excitonic materials and use that knowledge to build more efficient devices such as LEDs and photovoltaics.

RoLi Lab - Jennifer Li  - (systems and behavioral neuroscience)
The ability to adjust one’s actions based on past experience (learning) and retain the value of past actions (memory) is one of the most complex, fascinating, and mysterious processes mediated by the animal brain. Fundamental questions remain about the precise contribution of individual neurons to learning, as well as the nature and complexity of interactions across neural circuits implicated in learning. Our lab aims to address these questions by recording and manipulating activity throughout an entire vertebrate brain while an animal actively engages in exploration and learning. Using the latest advances in optogenetics and microscopy, we will identify and selectively manipulate the neural circuitry that underlies learning in larval zebrafish, as well as develop novel high throughput learning paradigms for pharmacological and genetic screening.

Nanoscale Sensors and Systems - Qimin Quan - (applied physics and nanotechnology)
Our lab seeks to understand novel optical phenomena in nanoscale structures and apply these novel phenomena to build functional devices. Optical cavities and nanostructures provide powerful means for modifying the interactions between light and matter, and have many exciting applications from quantum communications to sensors. We are interested in developing high-sensitivity, high-throughput biomedical sensors towards the realization of a portable instrument. We are also interested in combining the light manipulation method with functional materials, such as polymers and carbon nanotubes to realize new functions.

RoLi Lab - Drew Robson  -  (neuroscience - microscope design and optogenetics)
Optogenetic tools are currently revolutionizing the field of systems neuroscience. To take advantage of these tools, our lab is developing novel imaging systems and computational frameworks to flexibly address neurons throughout an entire vertebrate brain. Using techniques such as multi-photon microscopy, selective plane illumination microscopy (SPIM), and optogenetics, we will dissect the interaction between neural networks in larval zebrafish. Specifically, we are interested in the neural circuitry that underlies reinforcement learning. The techniques that we are developing will make it possible to rigorously test the involvement of multiple classes of reinforcement signals, clarify their interdependence, and raise new hypotheses about the organization of reinforcement circuitry in a vertebrate brain.

Tao Lab - Ye Tao -  (physics - materials science)
The Tao Lab seeks structure-property relationships in nanoscale, heterogeneous matter through the development of single-nucleon magnetic resonance imaging.   On this journey toward direct, 3D imaging of atomic structures, we are compelled to lift the performances of force-sensing and magnetic gradient-generating systems to new heights.   We expand the tool boxes of nanofabrication and material synthesis, for the existing arsenal of sample preparation methods usually proves inadequate to support this nano-engineering tour de force.   This multidisciplinary adventure will continue to enable discoveries and understanding of new physical phenomena and chemical processes.

Taute Lab - Katja Taute  -  (physics - microbial biophysics)
Motility allows diverse types of organisms from bacteria to humans to seek out favourable environments providing, for instance, nutrients, light, or company. Often motility behavior follows particular patterns: For example, roaming and dwelling in C. elegans worms, or truncated Lévy flights in human mobile phone users. It stands to reason that there must be a relationship between the type of motility pattern an organisms uses and the typical tasks that nature selects it to perform well in. On the other hand, how an organism moves must also be limited by what is physically possible: Worms cannot fly. Thus, both ecology and physics must play a role in the natural selection of motility patterns.  The Taute lab uses the simplest motile organisms - bacteria - to study how natural diversity in motility patterns is shaped by physical constraints and ecological requirements.

Wang Lab - Haotian Wang  -  (chemistry - materials science)
Our group is focused on designing novel nanomaterials for renewable energy and environmental applications including catalysis, rechargeable batteries, as well as CO2 treatment. We combine catalysis and battery studies to open up completely new opportunities for significant improvements in both areas. We also try to design high-efficiency and high-selectivity catalysts to electrochemically reduce CO2 gas into hydrocarbon fuels for a complete loop of carbon cycle to prevent global warming.

 

Rowland Senior Fellows

Photochemistry and Photobiology - James Foley  - (chemistry)
Our research interests center on understanding fundamental structure/function relationships pertaining to the photophysics that govern the properties and behavior of organic dyes. We use this knowledge to develop improved chromophores for use in biophysical, biological and medical applications such as single molecule detection, fluorescent reporting and photodynamic therapy. Our approach encompasses nearly every aspect that is essential to such an undertaking including computer-aided design, chemical synthesis and photophysical characterization of target dyes.

Trapped Ion Dynamics - Joel Parks – (physics)
Electron diffraction measurements of isolated, single sized clusters stored in ion traps is being applied to the study of small (n ~10-50 atoms) metal clusters including Aun and Agn. These measurements are directed to better understand and exploit the dependence of catalytic reactivity on cluster structure and temperature. Sensitive methods developed to measure laser-induced fluorescence from <10 trapped ions are being applied to study the dynamics of DNA in gas phase. Temperature dependent measurements demonstrate these methods will be useful to characterize conformational change in gas phase biomolecules. Sequential loss of electrons from trapped DNA anions has been observed for the first time and experiments suggest DNA conformations may be a determining factor.



Staff Scientists

Associate Director for Science - Michael Burns – (physics)
Over the years I've participated in a number of, to me, fascinating projects. I have found no particular common thread other than simple curiosity coupled with an opportunity to indulge that curiosity, and equally curious colleagues. Some of the current and past projects are described herein.

Electronics Engineering - Winfield Hill – (technology)
The Electronics Engineering Laboratory pursues R & D projects that push the envelope of scientific instrumentation. We do this by applying technologies from diverse fields to create unique instruments, and by learning and applying advanced circuit-design knowledge to endow otherwise common-place instruments with superior performance.

Biophysical Sciences - Diane Schaak – (biophysics)

Computation - Alan Stern – (mathematics)

Instrumentation development - Chris Stokes  – (electronics engineering)

Bacterial motility - Linda Turner Stern  – (microbiology)


Affiliated Harvard Faculty

Bacterial Motility and Behavior - Howard Berg – (biophysics)
The Berg lab at Rowland is a branch of Howard Berg's lab at the Department of Molecular and Cellular Biology on the main Harvard campus. It investigates bacterial motility and chemotaxis using video, fluorescence, and electron microscopy. The chief target of research is the bacterium Escherichia coli, with topics ranging from the hydrodynamics of swimming with flagella to a phenomenological description of chemotactic movement to studies of the biochemical networks that allow E. coli to perform chemotaxis. Recent work includes imaging of pili-mediated twitching motility in Pseudomonas aeruginosa, high-speed video imaging of flagellar filaments during E. coli tumbling, and the creation of a Serratia marcescens 'bacterial carpet' that mixes and pumps liquid inside microfluidic channels.

Rowland Director - Cynthia Friend– (chemistry)
 My current research is focused on developing solutions to important problems in energy usage and environmental chemistry.  The two major facets of my work are (1) design and development of new processes for sustainable and efficient chemical synthesis using alloy catalysts as a means of reducing dependence on fossil fuel resources; and, (2) investigation of new semiconductor materials for light-induced reactions, including water splitting and degradation of organic pollutants.

Scanning Tunneling Microscopy Group - Venky Narayanamurti – (physics)
Research within the Narayanamurti Group is directed at the physics of hot electron- and hole- transport in novel semiconductor electronic materials and devices. A key goal is to study quantum confinement effects in nanostructures. The group interacts with similar electronic materials efforts at other universities, government, and industrial research laboratories.